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Abstract. In this preprint, we study the distribution in higher
moments of matrix elements. It turns out that the higher moments
of matrix elements does not follow the gaussian distribution.

1. Introduction

Let µj(ψ) =
∫
SL2(Z)\H ψ(z)|φj(z)|2dµ where ψ, φ are even Hecke-

Maass forms, ψ fixed and φj varying. Denote by λj = 1
4

+ t2j the
Laplace eigenvalue of φj. When averaging over a suitable window of
λj’s, the local Weyl law says that the mean of the µj’s is zero and
the variance is the classical variance twisted by the central value of
Hecke-Maass L-function of ψ(z) [12]. Now normalize µj(ψ) by setting

Fj := λ
1/4
j µj(ψ)

which have constant variance σ(ψ)2 > 0 (assuming L(1
2
, ψ) 6= 0). For

generic system, Eckhart et al [3] predict a central limit theorem for Fj,
i.e., the distribution of Fj is Gaussian. A stronger form is to say that
the higher moments are Gaussian, that is

1

N(T,H)

∑
T<λj<T+H

|Fj|2r ∼
1√
2πσ

∫ ∞
−∞

x2re−x
2/2σ2

dx

where N(T,H) = #{T < λj < T + H} and H = T a (the exact choice
of window does not matter here and in fact we can choose a Gaussian
window with H = T 1−δ as in [12]).

For the modular group, we expect that this Gaussian moments pre-
dict does not hold, in fact it is shown that the higher moments blow
up, precisely we have

Theorem 1. For even integer r ≥ 2,

1

N(T,H)

∑
T<λj<T+H

|Fj|2r � (log T )r(r−1)/2.
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To prove this, recall Watson’s formula

|Fj|2 ∼ c(ψ)
L(1

2
, ψ × Sym2φj)

L(1, Sym2φj)2
.

Therefore understanding moments of the normalized matrix coefficients
is equivalent to studying moments of central values of the L-function
L(1

2
, ψ×Sym2φj), decorated by the factor 1/L(1, Sym2φj)

2, as we vary
over the family of all Hecke-Maass forms. Thus the problem falls into
the realm of showing lower bounds for moments of L-functions, for
which we can apply the technique in [8], [9].

Theorem 2. For even integer r ≥ 2,

1

N(T,H)

∑
T<λj<T+H

L(
1

2
, ψ × Sym2φj)

r � (log T )r(r−1)/2.

To prove this, let

LT (
1

2
, ψ × sym2(φj)) =

∑
(m1m2

2)≤T ε
λψ(m1)aΦj(m1,m2)(m1m

2
2)−1/2

we consider

S1 :=
∑

T<λj<T+H

(LT (
1

2
, ψ × Sym2φj))

r,

S2 :=
∑

T<λj<T+H

L(
1

2
, ψ × Sym2φj)(L

T (
1

2
, ψ × Sym2φj))

r−1.

Keeping in mind that r is even so

|LT (
1

2
, ψ × Sym2φj)|r = (LT (

1

2
, ψ × Sym2φj))

r.

By Hölder inequality, we have∑
T<λj<T+H

L(
1

2
, ψ × Sym2φj)L

T (
1

2
, ψ × Sym2φj)

r−1

≤

 ∑
T<λj<T+H

L(
1

2
, ψ × Sym2φj)

r

 1
r
 ∑
T<λj<T+H

(LT (
1

2
, ψ × Sym2φj)

r−1)
r
r−1

 r−1
r

Hence ∑
T<λj<T+H

L(
1

2
, ψ × Sym2φj)

r ≥ Sr2
Sr−1

1

.

We can derive Theorem 2 by finding the following asymptotic orders
of magnitude of S1 and S2:
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Lemma 1. For even integer r ≥ 2,

S1 � H(log T )r(r−1)/2.

Lemma 2. For even integer r ≥ 2,

S2 � H(log T )r(r−1)/2.

2. Proof of Lemma 1

To evaluate

S1 =
∑

T<λj<T+H

LT (
1

2
, ψ × Sym2φj)

r,

we expand out LT (
1

2
, ψ × Sym2φj)

r and group terms using the Hecke

relations. To do this conveniently, we denote by H the ring generated
over the integers by symbols x(n) subject to the Hecke relations

x(1) = 1, and x(m)x(n) =
∑
d|(m,n)

x
(mn
d2

)
.

Then H is a polynomial ring on x(p) where p runs over all primes. By
the Hecke relation we can write

x(n1) · · ·x(nr) =
∑

t|n1···nr

bt(n1, · · · , nr)x(t).

Obviously, the integer coefficients bt(n1, · · · , nr) is symmetric in n1, · · · , nr,
and it is always non-negative. Also, we have

bt(n1, · · · , nr) ≤ τ(n1) · · · τ(nr)� (n1 · · ·nr)ε

for any ε.
The coefficient of x(1), b1(n1, · · · , nr) is important in our proof. Here

are some basic properties:

Multiplicative property: if (
r∏
j=1

mj,

r∏
j=1

nj) = 1, then

b1(m1n1, · · · ,mrnr) = b1(m1, · · · ,mr)b1(n1, · · · , nr).

So it suffices to understand b1(pa1 , · · · par) for prime p. We have

0 ≤ b1(pa1 , · · · par) ≤ (1 + a1) · · · (1 + ar)

and it is 0 if a1 + · · ·+ ar is odd. If we let

Br(n) =
∑

n1···nr=n

b1(n1, · · · , nr),
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Br(n) is a multiplicative function and Br(n) = 0 unless n is a square.
Also, Br(p

a) is independent of p and grows at most polynomially in a.
To be noted that

Br(p
2) =

(
r

2

)
=
r(r − 1)

2
,

which follows by the facts b1(p2, 1, · · · , 1) = 0 and b1(p, p, 1, · · · , 1) = 0.
Since

LT (
1

2
, ψ × sym2(φj)) =

∑
(m1m2

2)≤T ε
λψ(m1)aΦj(m1,m2)(m1m

2
2)−1/2

=
∑
d

µ(d)

d
3
2

∑
s1,s2,t1,t2

λψ(ds2
1t1)(s2

1t1s
4
2t

2
2)−1/2

λj(t
2
1)λj(t

2
2)

Here, we let mi = ds2
i ti. In view of Kuznetsov formula we will

apply later, we analyze the above sum as follows: m1m
2
2 = d3s2

1s
4
2t1t

2
2

essentially is d3s2
1 since only small t1, t2 contribute. s4

2 can be omitted,
also.

For ∑
d≥1

µ(d)

d
3
2

∑
s1

λψ(ds2
1)

s1

use multiplication property, Euler product and shift contour, we can
control the outer sums in the following LT (1

2
, ψ × sym2(φj))

r.

LT (
1

2
, ψ × sym2(φj))

r =

 ∑
(m1m2

2)≤T ε
λψ(m1)aΦj(m1,m2)(m1m

2
2)−1/2

r

=
∑

d1,··· ,dr

∏r
1 µ(di)∏r

1 d
3
2
i

∑
s1,1,··· ,sr,2
t1,1,··· ,tr,2

r∏
1

λψ(dis
2
i,1ti,1)(s2

i,1ti,1s
4
i,2t

2
i,2)−1/2

r∏
1

λj(t
2
i,1)λj(t

2
i,2)

=
∑

d1,··· ,dr

∏r
1 µ(di)∏r

1 d
3
2
i

∑
s1,1,··· ,sr,2
t1,1,··· ,tr,2

r∏
1

λψ(dis
2
i,1ti,1)(s2

i,1ti,1s
4
i,2t

2
i,2)−1/2

∑
t|t21,1···t2r,2

bt(t
2
1,1, · · · , t2r,2)λj(t)
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Hence we need evaluate
∑

T<λj<T+H

λj(t), to do this we apply the fol-

lowing proposition established by Kuznetsov formula:

Proposition 1. Let s and t be positive integers with st ≤ T 2/100, we
have ∑

T<λj<T+T 1−ε

λj(s)λj(t) = T 1−εδ(s, t) +O(e−T ),

where δ(s, t) = 1 if s = t and is 0 otherwise.

Since ti,j ≤ T ε, from the above proposition, we have the essential
terms in S1:∑

n≤T ε
B2r(n) ≤

∑
t1,1,··· ,t2,r≤T ε

b1(t1,1, · · · , t2,r) ≤
∑

n≤T 2rε

B2r(n)

Where Br(n) is a multiplication function with Br(p) = 0 and Br(p
2) =

r(r − 1)

2
, Br(p

n) grows only polynomially in n, so the generating func-

tion
∞∑
n=1

Br(n)n−s can be compared with ζ(2s)r(r−1)/2, the quotient

being a Dirichlet series absolutely convergent in Re(s) >
1

4
. Then by a

standard argument [10], (applying Perron formula and shift contour)∑
n≤T ε

B2r(n) ∼ CrT
ε(log T )r(r−1)/2

Hence, we can deduce Lemma 1.

3. Proof of Lemma 2

To prove Lemma 2, we apply the similar argument as the proof in
Lemma 1 and an approximate functional equation for L(1

2
, ψ×Sym2φj):

L(1/2, ψ⊗sym2(φj)) = 2
∑

m1,m2≥1

λψ(m1)aΦj(m1,m2)(m1m
2
2)−1/2V (

m1m
2
2

t2j
)

where

V (y) =
1

2πi

∫
(2)

y−s
γ(1/2 + s, ψ ⊗ sym2(φj))

γ(1/2, ψ ⊗ sym2(φj))

ds

s
,

γ(s, ψ ⊗ sym2(φj)) = π−3sΓ

(
s+ itψ

2
+ itj

)
Γ

(
s+ itψ

2
− itj

)
Γ

(
s+ itψ

2

)
Γ

(
s− itψ

2
+ itj

)
Γ

(
s− itψ

2
− itj

)
Γ

(
s− itψ

2

)
.
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We have the following proposition:

Proposition 2.

L(1/2, ψ ⊗ sym2(φj)) = 2
∑

m1m2
2≤T

λψ(m1)aΦj(m1,m2)(m1m
2
2)−1/2VT (

m1m
2
2

t2j
)

+O(e−T )

For the weight VT (ξ), it satisfies |VT (ξ)| � Tπ−T/ξ for ξ > T , VT (ξ) =
1 +O(e−T ) for small ξ < T/100 and VT (ξ)� 1 for T/100 ≤ ξ ≤ T .

Combined with the method in Lemma 1 and the observation that

b1(n1, · · · , n2r−1, t) = bt(n1, · · · , n2r−1)

if t|n1 · · ·n2r−1, otherwise b1(n1, · · · , n2r−1, t) = 0. We may see Lemma
2 follows.
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