A combinatorial characterization of postcritically finite Newton maps

Russell Lodge

Jacobs University Bremen

October 14, 2013

Joint work with Y. Mikulich, D. Schleicher

There is a bijection between the following:

- postcritically finite polynomials (up to affine conjugacy)
- minimal abstract extended Hubbard trees (up to equivalence)

 $F: S^2 \longrightarrow S^2$ finite degree branched cover C_F is the set of critical points

• The *postcritical set* of *F* is given by

$$P_F = \bigcup_{i>0} F^i(C_F).$$

• If $|P_F|$ is finite, F is said to be *postcritically finite*

Definition

A marked branched cover is a pair (F, X) where $F : S^2 \to S^2$ is a branched cover with $deg(F) \ge 2$, and X is a finite forward invariant set containing the postcritical set.

Definition

Let (F, X) and (G, Y) be marked branched covers. They are *Thurston* equivalent if there are orientation preserving homeomorphisms

$$h_0, h_1: (S^2, X) \longrightarrow (S^2, Y)$$

with h_0 homotopic to h_1 rel X, so that the following commutes:

$$(S^{2}, X) \xrightarrow{h_{1}} (S^{2}, Y)$$

$$\downarrow G$$

$$(S^{2}, X) \xrightarrow{h_{0}} (S^{2}, Y)$$

Definition

A rational function $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ of degree $d \ge 3$ is a *Newton map* if there exists a polynomial p such that for every $z \in \mathbb{C}$,

$$f(z) = z - p(z)/p'(z)$$

Theorem (Y. Mikulich, D. Schleicher,–)

There is a bijection between the set of postcritically finite Newton maps up to affine conjugacy and the set of abstract extended Newton graphs up to Thurston equivalence. p is a degree d polynomial with simple roots $N_p(z) = z - \frac{p(z)}{p'(z)}$

- N_p is a rational function of degree d
- $N_p'(\infty) = d/(d-1)$ and is a repelling fixed point
- The roots of *p* correspond to finite superattracting fixed points of N_p (since $N'_p = \frac{p \cdot p''}{p' \cdot p'}$)
- A degree *d* rational map has *d* + 1 fixed points and 2*d* − 2 critical points counting multiplicity

Thus the only fixed points of N_p are at ∞ and roots of p.

(Hubbard, Schleicher, Sutherland): The immediate basin of a fixed critical point of multiplicity m has exactly m accesses to infinity.

The Julia set for a degree 6 Newton map

Degree 4 PCF Newton map (K.Mamayusupov)

Detail of previous slide

Degree 4 Newton map (K.M, L.Bartholdi)

Definition (Newton graph of level n)

For $n \ge 0$, denote by Δ_n the component of $N_P^{-n}(\Delta)$ that contains Δ . The Newton graph of level n is the pair (Δ_n, N_p) .

Theorem (Mikulich,Ruckert,Schleicher)

There is some level N of the Newton graph so that

- All non-free critical points are contained in Δ_N .
- $\Delta_N \setminus \Delta$ is connected
- The restriction of some iterate of N_p to all complementary components of Δ_N containing free critical points is renormalizable.

Definition (Abstract Channel Diagram)

An abstract channel diagram of degree $d \ge 3$ is a graph $\Delta \subset S^2$ with vertices $v_1, \ldots, v_d, v_\infty$ and edges e_1, \ldots, e_l that satisfies the following properties:

- (1) $l \leq 2d 2$
- (2) each edge joins v_{∞} to a v_i
- (3) each v_i is connected to v_{∞} by at least one edge
- (4) if e_i and e_j both join v_{∞} to v_k , then each connected component of $S^2 \setminus \overline{e_i \cup e_j}$ contains at least one vertex of Δ

Definition (Abstract Newton Graph)

Let $\Gamma \subset S^2$ be a connected finite graph and $f : \Gamma \to \Gamma$ a graph map. The pair (Γ, f) is called an *abstract Newton graph* if it satisfies the following conditions:

- (1) There exists $d_{\Gamma} \geq 3$ and an abstract channel diagram $\Delta \subsetneq \Gamma$ of degree d_{Γ} such that f fixes each vertex and each edge of Δ .
- (2) The graph map f can be extended to a branched covering $f: S^2 \to S^2$ such that the following conditions (3) (6) are satisfied.

Definition (Abstract Newton Graph cont'd)

(3) If v₁,..., v_{d_Γ}, v_∞ are the vertices of Δ, then v_i ∈ Γ \ Δ if and only if i ≠ ∞. Moreover, there are exactly deg_{v_i}(f) − 1 ≥ 1 edges in Δ that connect v_i to v_∞ for i ≠ ∞.

(4)
$$\sum_{x\in\Gamma'} \left(\deg_x(\overline{f})-1\right) \leq 2d_{\Gamma}-2.$$

(5) The graph $\overline{\Gamma \setminus \Delta}$ is connected.

(6) Γ equals the component of $\overline{f}^{-N_{\Gamma}}(\Delta)$ that contains Δ .

Definition (Abstract Extended Newton Graph)

 $\Sigma \subset S^2$ a finite connected graph, $f : \Sigma \to \Sigma$ a graph map, and Σ' the set of vertices. A pair (Σ, f) is called an *abstract extended Newton graph* if:

- (1) (Edge Types) Any two different edges in Σ may only intersect at vertices of Σ . Every edge must be one of the following three types:
 - An edge in the abstract Newton graph Γ
 - An edge in a periodic or preperiodic abstract Hubbard tree
 - A periodic or preperiodic abstract Newton ray
- (2) (Abstract Newton graph) There exists a positive integer N and an abstract Newton graph Γ at level N so that Γ ⊆ Σ. Furthermore N is minimal so that condition (6) holds.
- (3) (Unique extendability) f can be extended to a branched covering $\overline{f}: S^2 \to S^2$, unique up to Thurston equivalence
- (4) (Topological admissibility) The total number of critical points of *f* counted with multiplicity is 2d_Γ 2, where d_Γ is the degree of the abstract channel diagram Δ ⊂ Γ.

Definition (Abstract Extended Newton Graph (cont'd))

- (5) (Periodic Hubbard trees) There is a finite collection of distinct, disjoint, possibly degenerate, abstract extended Hubbard trees H_i ⊂ Σ, where H_i ∩ Γ = Ø, and for each H_i there is a minimal positive integer m_i ≥ 2 called the period of the tree such that *f*^{m_i}(H_i) = H_i. For all k, the forward image of f^k(H_i) is always some periodic Hubbard tree.
- (6) (Preperiodic Hubbard trees) There is a finite collection of distinct, disjoint, possibly degenerate abstract extended Hubbard trees H'_i ⊂ Σ where H'_i ∩ Γ = Ø, and for each *i* there is some minimal positive integer ℓ_i ≥ 1 so that *f*^{ℓ_i}(H'_i) is a periodic Hubbard tree. This ℓ_i is called the preperiod of H'_i and for 1 ≤ k < ℓ_i, the forward image f^k(H'_i) is always some preperiodic Hubbard tree.
- (7) (Trees separated) Any two different abstract extended Hubbard trees lie in different complementary components of Γ.

Definition (Abstract Extended Newton Graph (cont'd))

- (8) (Periodic Newton Rays) For every periodic abstract extended Hubbard tree H_i of period m_i and every fixed point ω_i of H_i there exists a periodic abstract Newton ray R_i that lands at ω_i (note that it is not required that R_i ⊂ Σ). For every β-fixed point ω_i of H_i, the graph Σ contains exactly one periodic abstract Newton ray R_i of period m_i that lands at ω_i, namely the rightmost such Newton ray.
- (9) (Preperiodic Newton Rays) For every preperiodic tree H'_i of preperiod ℓ_i where *f*^{ℓ_i} (H'_i) = H_j, the following holds: for every ω'_i ∈ H'_i so that *f*^{ℓ_i} (ω'_i) is a β-fixed point of H_j, there exists exactly one preperiodic abstract Newton ray in Σ that lands at ω'_i, and whose image under *f*^{ℓ_i} is a ray of period m_j landing on H_j.

< ロト < 同ト < ヨト < ヨト

- A simple closed curve γ in S² \ X is essential if each component of S² \ γ intersects X in at least two points.
- A multicurve is a collection Γ = {γ₁,...γ_k} of disjoint essential curves where the elements of the collection are pairwise non-homotopic.
- Use \mathscr{C}_F to denote the set of homotopy classes of essential simple closed curves in $S^2 \setminus X$.
- Denote by $\mathbb{R}[\mathscr{C}_F]$ the free \mathbb{R} -module over \mathscr{C}_F .

• The Thurston linear map $\lambda_F : \mathbb{R}[\mathscr{C}_F] \longrightarrow \mathbb{R}[\mathscr{C}_F]$ is defined by

$$\lambda_{\mathcal{F}}(\gamma) = \sum_{\gamma'} \sum_{\gamma' \simeq \delta \subset \mathcal{F}^{-1}(\gamma)} \frac{1}{\deg(\mathcal{F} : \delta \to \gamma)} \cdot \gamma'$$

where γ and γ' are essential curves and the outer sum is over all γ' homotopic to preimages of γ .

• A Thurston obstruction is a nonempty multicurve Γ so that $\mathbb{R}[\Gamma]$ is invariant under λ_F , and the spectral radius of λ_F is greater than or equal to 1.

Theorem (Thurston)

Let (F, X) be a marked branched cover not equivalent to a Lattès map. Then (F, X) is Thurston equivalent to a rational function if and only if there are no obstructions. If this rational function exists, it is unique up to Möbius conjugation.

Definition (Intersection Number)

Let α and β each be an arc or a simple closed curve in (S^2, X) . Their *intersection number* is

$$\alpha \cdot \beta := \min_{\alpha' \simeq \alpha, \, \beta' \simeq \beta} \# \{ (\alpha' \cap \beta') \setminus X \} \; .$$

The intersection number extends bilinearly to arc systems and multicurves.

We will now prove that every abstract extended Newton graph gives rise to a postcritically finite Newton map.

Proof: Let Π be an irreducible Thurston obstruction, i.e. for $\gamma, \gamma' \in \Pi$, there exists n > 0 so that some component of $\overline{f}^{-n}(\gamma)$ is homotopic to γ' rel the vertices of Σ . We will show this results in a contradiction.

October 14, 2013

26 / 30

• Case 1:
$$\Pi \cdot \Delta \neq 0$$

• Case 2: $\Pi \cdot \Delta = 0$

A set of pairwise non-isotopic arcs in (S^2, X) is called an *arc system*. Two arc systems Λ, Λ' are *isotopic* if each curve in Λ is isotopic relative to X to a unique element of Λ' and vice versa.

Denote by $\tilde{\Lambda}(f^{\circ n})$ the union of those components of $f^{-n}(\Lambda)$ that are isotopic to elements of Λ relative X, and define $\Pi(f^{\circ n})$ similarly.

Theorem (Kevin Pilgrim, Tan Lei)

Let (f, X) be a marked branched covering, Π an irreducible Thurston obstruction and Λ an irreducible arc system. Suppose furthermore that $\#(\Pi \cap \Lambda) = \Pi \cdot \Lambda$. Then, exactly one of the following is true:

1
$$\Pi \cdot \Lambda = 0$$
 and $\Pi \cdot f^{-n}(\Lambda) = 0$ for all $n \ge 1$.

2 Π · Λ ≠ 0 and for n ≥ 1, each component of Π is isotopic to a unique component of Π(f^{on}). The mapping f^{on} : Π(f^{on}) → Π is a homeomorphism and Π(f^{on}) ∩ (f⁻ⁿ(Λ) \ Λ(f^{on})) = Ø.

October 14, 2013

27 / 30

This theorem implies that $\Pi \cdot (\Gamma \setminus \Delta) = \emptyset$, and that Π may not intersect the Newton rays.

Proof of Case 1

 Π is an irreducible Thurston obstruction, $\gamma_1\in\Pi$ so that $\gamma_1\cdot\Delta\neq 0$

3

There is a complementary component U of the Newton graph containing some component of the obstruction Π as well as a Hubbard tree of some period m.

Then $(f|_U)^m$ is obstructed. Contradiction.

Thank you for your attention!

- ∢ ⊢⊒ →